Life Sciences for Engineers

Course Code	19BS1303	Year	II	Semester	I	
Course Category	Basic Sciences	Branch	CSE	Course Type	Theory	
Credits	2	L-T-P	2-0-0	Prerequisites	-	
Continuous Internal Evaluation :	30	Semester End Evaluation:	70	Total Marks:	100	

Course Outcomes						
Upon si	Upon successful completion of the course, the student will be able to:					
CO1	Apply principles of biology to create tangible and economically viable engineering goods.	L3				
CO2	Employ knowledge and expertise bio-engineering field.	L2				
СОЗ	Improve the living standards of societies.	L3				
CO4	Gain knowledge in genetic engineering.	L1				
CO5	Implement the knowledge in genetic engineering in industrial field.	L3				

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)													
	PO1		PO3		PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3						2							
CO2	3						2							
CO3	3						2							
CO4	3						2							
CO5	3						2							

Course Content								
UNIT-1	Introduction to Biology: Comparison of Biological organisms with manmade systems- eye and camera, flying bird and aircraft. Classificationoflivingorganisms- Cellular basis of life, differences between prokaryotes and eukaryotes, classification on the basis of carbon and energy sources.	CO1, CO3, CO5						
UNIT-2	Bio-molecules: Structureandfunctionsofproteinsandnucleicacids,hemoglobin,antibodies. Enzymes-Industrial applications, Fermentation and its industrial applications.	CO1,						
UNIT-3	Bioenergetics and Respiration: Glycolysis and TCA cycle, Electron transport chain and oxidative phosphorylation, Mechanism of photosynthesis. Human physiology.	CO2,						
UNIT-4	Genetic Engineering: Mendel'slaws,genemapping,MitosisandMeiosis,Epistasis,singlegenedisordersinhumans.Genetic code.	CO2, CO4, CO5						
UNIT-5	Recombinant DNA Technology: Recombinant vaccines, transgenic microbes, plants and animals. Animal cloning, biosensors, biochips.	CO1, CO4, CO5						
	Learning Resources	•						
Text Books	 Biology: A global approach, N. A. Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wassern Tenth Edition, 2015, Pearson. Biology for Engineers, Arthur T Johnson, 2011, CRC press. 	nan,						
Reference Books	 The molecular biology of the cell, Alberts et al., Sixth Edition, 2014, Garland Science. Outlines of Biochemistry, E. E. Conn, P. K. Stumpf, G. Bruening and R. H. Doi, Fifth Edition, 2009, John Wileyand Sons. Introduction to Biomedical Engineering, John Enderle and Joseph Bronzino, Third Edition, 2012, Academic Press. 							